1,167 research outputs found

    Orbitofrontal epilepsy: Electroclinical analysis of surgical cases and literature review

    Get PDF
    Clinical and electrographic data were reviewed on 2 of our patients with orbitofrontal epilepsy who were seizure free at 5-year follow-up, and on 2 similar patients from the literature. One of our patients was lesional, and the other was nonlesional. Interictal EEG discharges were lateralized to the side of invasively recorded orbitofrontal seizures in the nonlesional case. In this case, no clinical manifestations occurred until the orbitofrontal discharge had spread to the opposite orbitofrontal and both mesial temporal areas. Unresponsiveness or arrest of activity were the initial manifestations of complex partial seizures in both cases. The 2 cases from the literature with long-term seizure-free follow-up had little impairment of awareness and displayed vigorous motor automatisms. Interictal epileptiform activity was bifrontally synchronous in 1 case. Ipsilateral frontotemporal discharges were seen in both. Invasive ictal epileptiform activity appeared maximal in the ipsilateral orbitofrontal region in both patients. No consistent electrographic or clinical pattern characterized these 4 cases. Seizures of orbitofrontal origin may be characterized by either unresponsiveness associated with oroalimentary automatisms or limited alteration of awareness and associated with vigorous motor automatisms. Invasive monitoring of the orbitofrontal cortex should be considered in nonlesional cases with complex partial seizures that show nonlocalizing ictal patterns and interictal frontal or frontotemporal epileptiform discharges. Copyright (C) 2004 S. Karger AG, Basel

    Brief increases in corticosterone affect morphology, stress responses, and telomere length, but not post-fledging movements, in a wild songbird

    Full text link
    Organisms are frequently exposed to challenges during development, such as poor weather and food shortage. Such challenges can initiate the hormonal stress response, which involves secretion of glucocorticoids. Although the hormonal stress response helps organisms deal with challenges, long-term exposure to high levels of glucocorticoids can have morphological, behavioral, and physiological consequences, especially during development. Glucocorticoids are also associated with reduced survival and telomere shortening. To investigate whether brief, acute exposures to glucocorticoids can also produce these phenotypic effects in free-living birds, we exposed wild tree swallow (Tachycineta bicolor) nestlings to a brief exogenous dose of cort once per day for five days and then measured their morphology, baseline and stress-induced corticosterone levels, and telomere length. We also deployed radio tags on a subset of nestlings, which allowed us to determine the age at which tagged nestlings left the nest (fledged) and their pattern of presence and absence at the natal site during the post-breeding period. Corticosterone-treated nestlings had lower mass, higher baseline and stress-induced corticosterone, and reduced telomeres; other metrics of morphology were affected weakly or not at all. Our treatment resulted in no significant effect on survival to fledging, fledge age, or age at first departure from the natal site, and we found no negative effect of corticosterone on inter-annual return rate. These results show that brief acute corticosterone exposure during development can have measurable effects on phenotype in free-living tree swallows. Corticosterone may therefore mediate correlations between rearing environment and phenotype in developing organisms, even in the absence of prolonged stressors.Comment: 35 pages, 4 figures, 1 appendi

    Glacial cycles promote greater dispersal, which can help explain larger clutch sizes, in north temperate birds

    Get PDF
    Earth’s glacial history and patterns in the life history traits of the planet’s avifauna suggest the following interpretations of how recent geological history has affected these key characteristics of the biota: 1) Increased colonizing ability has been an important advantage of increased dispersal, and life history strategies are better categorized by dispersive colonizing ability than by their intrinsic growth rates; 2) Birds of the North Temperate Zone show a greater tendency to disperse, and they disperse farther, than tropical or south temperate birds; 3) Habitat changes associated with glacial advance and retreat selected for high dispersal ability, particularly in the North; and 4) Selection for greater dispersal throughout the unstable Pleistocene has also resulted in other well-recognized life history contrasts, especially larger clutch sizes in birds of North Temperate areas

    Interrelations among Immune Defense Indexes Reflect Major Components of the Immune System in a Free-Living Vertebrate

    Get PDF
    Understanding the relationships among immune components in free-living animals is a challenge in ecoimmunology, and it is important not only for selecting the immune assays to be used but also for more knowledgeable interpretation of results. In this study, we investigated the relationships among six immune defense indexes commonly used by ecoimmunologists and measured simultaneously in individual free-living tree swallows. Three main axes of variation in immune function were identified using a principal components analysis, representing variation in T-cell, B-cell, and innate immunity. Measures within each axis tended to be positively correlated among individuals, while measures in different axes were uncorrelated. A trade-off between T-cell function and B-cell function became apparent only when variation among individuals in body condition, age, and general quality was taken into account. Interestingly, the level of natural antibodies, a component of innate immunity, showed the strongest association with components of acquired B-cell function, possibly reflecting a common underlying genetic mechanism, as has been documented in poultry. Our results indicate that despite the complexity of the immune system, important insights can be gained by using the currently available assays but in a more comprehensive approach than has generally been used in the field of ecoimmunology

    Optimizing identification of clinically relevant gram-positive organisms by use of the bruker biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry system

    Get PDF
    Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) can be used as a method for the rapid identification of microorganisms. This study evaluated the Bruker Biotyper (MALDI-TOF MS) system for the identification of clinically relevant Gram-positive organisms. We tested 239 aerobic Gram-positive organisms isolated from clinical specimens. We evaluated 4 direct-smear methods, including “heavy” (H) and “light” (L) smears, with and without a 1-μl direct formic acid (FA) overlay. The quality measure assigned to a MALDI-TOF MS identification is a numerical value or “score.” We found that a heavy smear with a formic acid overlay (H+FA) produced optimal MALDI-TOF MS identification scores and the highest percentage of correctly identified organisms. Using a score of ≥2.0, we identified 183 of the 239 isolates (76.6%) to the genus level, and of the 181 isolates resolved to the species level, 141 isolates (77.9%) were correctly identified. To maximize the number of correct identifications while minimizing misidentifications, the data were analyzed using a score of ≥1.7 for genus- and species-level identification. Using this score, 220 of the 239 isolates (92.1%) were identified to the genus level, and of the 181 isolates resolved to the species level, 167 isolates (92.2%) could be assigned an accurate species identification. We also evaluated a subset of isolates for preanalytic factors that might influence MALDI-TOF MS identification. Frequent subcultures increased the number of unidentified isolates. Incubation temperatures and subcultures of the media did not alter the rate of identification. These data define the ideal bacterial preparation, identification score, and medium conditions for optimal identification of Gram-positive bacteria by use of MALDI-TOF MS

    Cardio-metabolic impact of changing sitting, standing, and stepping in the workplace

    Get PDF
    According to cross-sectional and acute experimental evidence, reducing sitting time should improve cardio-metabolic health risk biomarkers. Furthermore, the improvements obtained may depend on whether sitting is replaced with standing or ambulatory activities. Based on data from the Stand Up Victoria multi-component workplace intervention, we examined this issue using compositional data analysis - a method that can examine and compare all activity changes simultaneously.Participants receiving the intervention (n=136 ≥0.6 full-time equivalent desk-based workers, 65% women, mean±SD age=44.6 ±9.1 years from seven worksites) were asked to improve whole-of-day activity by standing up, sitting less and moving more. Their changes in the composition of daily waking hours (activPAL-assessed sitting, standing, stepping) were quantified, then tested for associations with concurrent changes in cardio-metabolic risk (CMR) scores and 14 biomarkers concerning body composition, glucose, insulin and lipid metabolism. Analyses were by mixed models, accounting for clustering (3 months, n=105-120; 12 months, n=80-97).Sitting reduction was significantly (

    A hidden Markov model for reconstructing animal paths from solar geolocation loggers using templates for light intensity

    Get PDF
    Background Solar archival tags (henceforth called geolocators) are tracking devices deployed on animals to reconstruct their long-distance movements on the basis of locations inferred post hoc with reference to the geographical and seasonal variations in the timing and speeds of sunrise and sunset. The increased use of geolocators has created a need for analytical tools to produce accurate and objective estimates of migration routes that are explicit in their uncertainty about the position estimates. Results We developed a hidden Markov chain model for the analysis of geolocator data. This model estimates tracks for animals with complex migratory behaviour by combining: (1) a shading-insensitive, template-fit physical model, (2) an uncorrelated random walk movement model that includes migratory and sedentary behavioural states, and (3) spatially explicit behavioural masks. The model is implemented in a specially developed open source R package FLightR. We used the particle filter (PF) algorithm to provide relatively fast model posterior computation. We illustrate our modelling approach with analysis of simulated data for stationary tags and of real tracks of both a tree swallow Tachycineta bicolor migrating along the east and a golden-crowned sparrow Zonotrichia atricapilla migrating along the west coast of North America. Conclusions We provide a model that increases accuracy in analyses of noisy data and movements of animals with complicated migration behaviour. It provides posterior distributions for the positions of animals, their behavioural states (e.g., migrating or sedentary), and distance and direction of movement. Our approach allows biologists to estimate locations of animals with complex migratory behaviour based on raw light data. This model advances the current methods for estimating migration tracks from solar geolocation, and will benefit a fast-growing number of tracking studies with this technology

    Approaches to detect genetic effects that differ between two strata in genome-wide meta-analyses: Recommendations based on a systematic evaluation.

    Get PDF
    Genome-wide association meta-analyses (GWAMAs) conducted separately by two strata have identified differences in genetic effects between strata, such as sex-differences for body fat distribution. However, there are several approaches to identify such differences and an uncertainty which approach to use. Assuming the availability of stratified GWAMA results, we compare various approaches to identify between-strata differences in genetic effects. We evaluate type I error and power via simulations and analytical comparisons for different scenarios of strata designs and for different types of between-strata differences. For strata of equal size, we find that the genome-wide test for difference without any filtering is the best approach to detect stratum-specific genetic effects with opposite directions, while filtering for overall association followed by the difference test is best to identify effects that are predominant in one stratum. When there is no a priori hypothesis on the type of difference, a combination of both approaches can be recommended. Some approaches violate type I error control when conducted in the same data set. For strata of unequal size, the best approach depends on whether the genetic effect is predominant in the larger or in the smaller stratum. Based on real data from GIANT (>175 000 individuals), we exemplify the impact of the approaches on the detection of sex-differences for body fat distribution (identifying up to 10 loci). Our recommendations provide tangible guidelines for future GWAMAs that aim at identifying between-strata differences. A better understanding of such effects will help pinpoint the underlying mechanisms
    corecore